### Radiometric dating Facts for Kids

line-graphs-and-radiometric-dating: line graphs and radiometric dating. Radiometric dating (often called radioactive dating) is a way to find out how old Radioactive decay. The age equation. Preconditions. Related pages. Images Plotting an isochron (straight-line graph) is used to solve the age equation. Line graphs and radiometric dating for dummies - Despicable me 2 online dating Fusion, Fission, Carbon Dating, Tracers & Imaging: Applications of Nuclear.

The mathematical expression that relates radioactive decay to geologic time is: This equation uses information on the parent and daughter isotopes at the time the material solidified.

This is well known for most isotopic systems. Plotting an isochron straight-line graph is used to solve the age equation graphically. It shows the age of the sample, and the original composition. Preconditions The method works best if neither the parent nuclide nor the daughter product enters or leaves the material after its formation.

Anything which changes the relative amounts of the two isotopes original and daughter must be noted, and avoided if possible.

## Line Graphs And Radiometric Dating

Contamination from outside, or the loss of isotopes at any time from the rock's original formation, would change the result. It is therefore essential to have as much information as possible about the material being dated and to check for possible signs of alteration. Measurements should be taken on samples from different parts of the rock body.

This helps to counter the effects of heating and squeezing, which a rock may experience in its long history. Different dating methods may be needed to confirm the age of a sample. All of the different dating methods agree--they agree a great majority of the time over millions of years of time. Some [skeptics] make it sound like there is a lot of disagreement, but this is not the case.

The disagreement in values needed to support the position of young-Earth proponents would require differences in age measured by orders of magnitude e.

The differences actually found in the scientific literature are usually close to the margin of error, usually a few percent, not orders of magnitude!

Vast amounts of data overwhelmingly favor an old Earth. Several hundred laboratories around the world are active in radiometric dating.

Their results consistently agree with an old Earth. Over a thousand papers on radiometric dating were published in scientifically recognized journals in the last year, and hundreds of thousands of dates have been published in the last 50 years.

Essentially all of these strongly favor an old Earth.

## Graphing Half Life WS

Radioactive decay rates have been measured for over sixty years now for many of the decay clocks without any observed changes. And it has been close to a hundred years since the uranium decay rate was first determined. A recent survey of the rubidium-strontium method found only about 30 cases, out of tens of thousands of published results, where a date determined using the proper procedures was subsequently found to be in error.

Both long-range and short-range dating methods have been successfully verified by dating lavas of historically known ages over a range of several thousand years.

The mathematics for determining the ages from the observations is relatively simple. Rates of radioactivity One question that sometimes arises here is how can scientists assume that rates of radioactivity have been constant over the great time spans involved. Creationist Henry Morris, for example, criticizes this type of "uniformitarian" assumption [ Morrispg.

But numerous experiments have been conducted to detect any change in radioactivity as a result of chemical activity, exceedingly high heat, pressure, or magnetic field.

None of these experiments has detected any significant deviation for any isotope used in geologic dating [ Dalrymplepg. Scientists have also performed very exacting experiments to detect any change in the constants or laws of physics over time, but various lines of evidence indicate that these laws have been in force, essentially the same as we observe them today, over the multi-billion-year age of the universe.

Note, for instance, that light coming to earth from distant stars which in some cases emanated billions of years ago reflects the same patterns of atomic spectra, based in the laws of quantum mechanics, that we see today. What's more, in observed supernova events that we observe in telescopes today, most of which occurred many millions of years ago, the patterns of light and radiation are completely consistent with the half-lives of radioactive isotopes that we measure today [ Isaakpg.

As another item of evidence, researchers studying a natural nuclear reactor in Africa have concluded that a certain key physical constant "alpha" has not changed measurably in hundreds of millions of years [ Barrowpg. Finally, researchers have just completed a study of the proton-electron mass ratio approximately Thus scientists are on very solid ground in asserting that rates of radioactivity have been constant over geologic time. The issue of the "uniformitarian" assumption is discussed in significantly greater detail at Uniformitarian.

Responses to specific creationist claims Wiens' online article, mentioned above, is an excellent resource for countering claims of creationists on the reliability of geologic dating. In an appendix to this article, Wiens addresses and responds to a number of specific creationist criticisms. Here is a condensed summary of these items, quoted from Wiens' article [ Wiens ]: Radiometric dating is based on index fossils whose dates were assigned long before radioactivity was discovered.

This is not at all true, though it is implied by some young-Earth literature. Radiometric dating is based on the half-lives of the radioactive isotopes.

These half-lives have been measured over the last years. They are not calibrated by fossils. No one has measured the decay rates directly; we only know them from inference.

Decay rates have been directly measured over the last years. In some cases a batch of the pure parent material is weighed and then set aside for a long time and then the resulting daughter material is weighed.

### Line graphs and radiometric dating · GitBook (Legacy)

In many cases it is easier to detect radioactive decays by the energy burst that each decay gives off. For this a batch of the pure parent material is carefully weighed and then put in front of a Geiger counter or gamma-ray detector. These instruments count the number of decays over a long time.

If the half-lives are billions of years, it is impossible to determine them from measuring over just a few years or decades. The example given in the section [in Wiens' article] titled, "The Radiometric Clocks" shows that an accurate determination of the half-life is easily achieved by direct counting of decays over a decade or shorter.

Additionally, lavas of historically known ages have been correctly dated even using methods with long half-lives. The decay rates are poorly known, so the dates are inaccurate.

### Reliability of Geologic Dating

Most of the decay rates used for dating rocks are known to within two percent. Such small uncertainties are no reason to dismiss radiometric dating.

Whether a rock is million years or million years old does not make a great deal of difference. To date a rock one must know the original amount of the parent element.

But there is no way to measure how much parent element was originally there. It is very easy to calculate the original parent abundance, but that information is not needed to date the rock.

**Template for PTE Describe Image Single Line Graph**

All of the dating schemes work from knowing the present abundances of the parent and daughter isotopes. There is little or no way to tell how much of the decay product, that is, the daughter isotope, was originally in the rock, leading to anomalously old ages. A good part of [Wiens' article] is devoted to explaining how one can tell how much of a given element or isotope was originally present.

Usually it involves using more than one sample from a given rock. It is done by comparing the ratios of parent and daughter isotopes relative to a stable isotope for samples with different relative amounts of the parent isotope.

From this one can determine how much of the daughter isotope would be present if there had been no parent isotope. This is the same as the initial amount it would not change if there were no parent isotope to decay. Figures 4 and 5 [in Wiens' article], and the accompanying explanation, tell how this is done most of the time. There are only a few different dating methods.

There are actually many more methods out there. Well over forty different radiometric dating methods are in use, and a number of non-radiogenic methods not even mentioned here. A young-Earth research group reported that they sent a rock erupted in from Mount Saint Helens volcano to a dating lab and got back a potassium-argon age of several million years.

This shows we should not trust radiometric dating. There are indeed ways to "trick" radiometric dating if a single dating method is improperly used on a sample. Anyone can move the hands on a clock and get the wrong time.